Evaluation of Small Intestine Grafts Decellularization Methods for Corneal Tissue Engineering
نویسندگان
چکیده
Advances in the development of cornea substitutes by tissue engineering techniques have focused on the use of decellularized tissue scaffolds. In this work, we evaluated different chemical and physical decellularization methods on small intestine tissues to determine the most appropriate decellularization protocols for corneal applications. Our results revealed that the most efficient decellularization agents were the SDS and triton X-100 detergents, which were able to efficiently remove most cell nuclei and residual DNA. Histological and histochemical analyses revealed that collagen fibers were preserved upon decellularization with triton X-100, NaCl and sonication, whereas reticular fibers were properly preserved by decellularization with UV exposure. Extracellular matrix glycoproteins were preserved after decellularization with SDS, triton X-100 and sonication, whereas proteoglycans were not affected by any of the decellularization protocols. Tissue transparency was significantly higher than control non-decellularized tissues for all protocols, although the best light transmittance results were found in tissues decellularized with SDS and triton X-100. In conclusion, our results suggest that decellularized intestinal grafts could be used as biological scaffolds for cornea tissue engineering. Decellularization with triton X-100 was able to efficiently remove all cells from the tissues while preserving tissue structure and most fibrillar and non-fibrillar extracellular matrix components, suggesting that this specific decellularization agent could be safely used for efficient decellularization of SI tissues for cornea TE applications.
منابع مشابه
Dextran Preserves Native Corneal Structure During Decellularization.
Corneal decellularization has become an increasingly popular technique for generating scaffolds for corneal regeneration. Most decellularization procedures result in tissue swelling, thus limiting their application. Here, the use of a polysaccharide, dextran, to reduce swelling and conserve the native corneal structure during decellularization was investigated. Corneas were treated with 1% Trit...
متن کاملA Decellularization Methodology for the Production of a Natural Acellular Intestinal Matrix
Successful tissue engineering involves the combination of scaffolds with appropriate cells in vitro or in vivo. Scaffolds may be synthetic, naturally-derived or derived from tissues/organs. The latter are obtained using a technique called decellularization. Decellularization may involve a combination of physical, chemical, and enzymatic methods. The goal of this technique is to remove all cellu...
متن کاملReview on Brain Decellularization Methods and their Applications for Tissue Engineering
Introduction: Tissue engineering by using decellularized tissues has been attracted attention of researchers in the regenerative medicine. Extra cellular matrix (ECM) is a secretory product of cells inside the tissues with supportive and regulatory function for homing cells. ECM contains glycosaminoglycans (GAGs) and fibrous proteins. Each particular tissue has its unique ECM, especially brain,...
متن کاملEvaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering.
Small intestine submucosa (SIS) has emerged as one of a number of naturally derived extracellular matrix (ECM) biomaterials currently in clinical use. In addition to clinical applications, ECM materials form the basis for a variety of approaches within tissue engineering research. In our preliminary work it was found that SIS can be consistently and reliably made into tubular scaffolds which co...
متن کاملCorneal Decellularization: A Method of Recycling Unsuitable Donor Tissue for Clinical Translation?
BACKGROUND There is a clinical need for biomimetic corneas that are as effective, preferably superior, to cadaveric donor tissue. Decellularized tissues are advantageous compared to synthetic or semi-synthetic engineered tissues in that the native matrix ultrastructure and intrinsic biological cues including growth factors, cytokines and glycosaminoglycans may be retained. However, there is cur...
متن کامل